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High-resolution gridded streamflow  
data for Ganges-Brahmaputra-
Meghna River Basins in  
Bangladesh (1951–2023)
Byeong-Hee Kim  1,2, Sazzad Hossain3,4 & Jonghun Kam  1 ✉

A 9-km daily gridded streamflow dataset is generated using the Variable Infiltration Capacity-River 
Routing Model (VIC-RRM) across the Ganges-Brahmaputra-Meghna River basins over 1951–2023, 
forced by the ERA5-Land reanalysis data for naturalized streamflow. Physically consistent streamflow 
forecast data is also generated forced by the ECMWF S2S forecasts. The performance of the dataset is 
evaluated using observed streamflow data from three gauge stations in Bangladesh along the streams 
of Ganges, Brahmaputra, and Meghna Rivers, calculating the modified Kling-Gupta Efficiency (mKGE) 
metric for the 365-day climatology. For Ganges, Brahmaputra, and Meghna Rivers, the mKGE values of 
reconstructed streamflow data are 0.50, 0.75, and 0.25, respectively. Comparing with the reconstructed 
streamflow data, the streamflow forecasts show a good agreement with mKGE values of 1.00, 0.97, and 
0.91 at three gauge stations, respectively. This dataset provides physically consistent reconstructed 
and forecasted streamflow data at high resolution, offering a valuable resource for the assessment 
of climate variability and change and the development of river basin-specific water management 
strategies in the Ganges-Brahmaputra-Meghna Rivers in Bangladesh.

Background & Summary
Streamflow is a critical element of the hydrological cycle, representing the movement and distribution of water 
influenced by the regional climate and characteristics of the river basin. This flow of water in streams and rivers 
is essential not only for supporting human activities such as agriculture, industry, and municipal use, but also 
for maintaining the health and functionality of ecosystems1. Given its importance, the efficient and effective 
management of water resources depends heavily on comprehensive and long-term assessments of streamflow2. 
Such long-term assessments are indispensable as they provide the necessary data to analyze river variability over 
time, assess the impacts of climate change, and implement measures for environmental conservation3. However, 
a significant challenge in conducting these assessments is the sparsity of streamflow records, both spatially and 
temporally. Many regions are lacking of sufficient gauge stations that provide continuous and extensive spatial/
temporal coverages, particularly in financially disadvantaged countries. Limited available streamflow data often 
hinder accurate hydrologic predictions and proactive water resources management.

Bangladesh is located in the Ganges-Brahmaputra-Meghna River Delta (Fig. 1), which is the 7th most 
disaster-prone country by climate change in the world during 2000–20194. Due to its geographical loca-
tion, Bangladesh is vulnerable to climate change with many extreme weather events such as floods, cyclones, 
droughts, and coastal erosion affecting the country almost every year5. These extreme weather events have 
caused significant damage to human lives, livelihoods, crops, livestock, and infrastructure4. The geographical 
location of Bangladesh exposes to the highest risk of flood hazard among South Asia countries. Approximately 
20–30% of the country is flooded each year. Over the last decade, a combination of climate change and growing 
population and human activity on floodplains has made floods more frequent and acute. In a changing climate, 
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the behavior of flooding in Bangladesh is likely to change and more frequent extreme events are expected with 
varying intensity. Bangladesh continuously required a hydrologic monitoring and forecasting system for flood 
control and mitigation.

To mitigate flood damage, Bangladesh has operated the Flood Forecasting and Warning Centre (FFWC) 
of Bangladesh Water Development Board (BWDB) under the Ministry of Water Resources (MoWR) in 1972. 
FFWC is fully operated from April to October every year, following the Standing Orders on Disaster (SOD) of 
the Government of Bangladesh6. The FFWC provides short-term (3-days and 5-days) definitive flood forecast, 
median-term (10-days and 15-days) probabilistic flood forecast, rainfall maps, flood inundation map, flood 
warning message service. Despite the operation of FFWC, flood damage continues to occur every year since 
dynamical forecasts in long range are missing, which cannot account for unprecedented floods. Probabilistic/
stochastic flood forecasts at a specific location require long-term observational data. Long-term observa-
tional records of daily streamflow are available at only three gauge stations at Bahadurabad, Hardinge Bridge, 
and Bhairab Bazar in Bangladesh (red markers in Fig. 1). Bangladesh has faced limited financial and human 
resources to build and maintain a national observational network system for hydrologic monitoring. These 
stations are however at a critical location for data validation because they are located at the downstream of 
Brahmaputra River (BR), Meghna River (MR) and Ganges River (GR) from neighbor countries including 
Bhutan, China and India. The observational records of daily streamflow at three gauge stations were provided 
by BWDB.

We explored other observational data sources for daily streamflow within Bangladesh from the Global 
Runoff Data Centre (GRDC)7, which provides the global observational records of streamflow and hydrologic 
characteristics, such as drainage area and stream lies, and found that GRDC provides only two stations at 
Bahadurabad and Hardinge Bridge with a shorter temporal coverage than those used in this study (Figure S1). 
Spatiotemporally limited streamflow records hinder the assessment of long-term change in streamflow and 
available water resources, which can provide actionable information for water policy makers and resource man-
agers in Bangladesh. To enhance the resiliency of Bangladesh to unprecedented floods in a changing climate, it is 
essential to reconstruct long-term streamflow data that addresses spatial and temporal limitations in insufficient 
streamflow monitoring data.

To overcome the spatial and temporal limitations of observations at gauge stations, the water resources 
community has invested considerable effort in developing advanced hydrologic models8. A particularly notable 
advancement in this field is the development of high-resolution hydrologic modeling9. These models operate at 
very fine spatial and temporal resolutions, providing detailed and accurate simulations of streamflow patterns. 
High-resolution models can capture the nuances of hydrological processes at scales previously unattainable, 
offering a powerful tool for researchers and water resource managers. Hydrologic models can estimate the nat-
uralized streamflow data without human activity. Naturalized streamflow can be used as a reference to estimate 

Fig. 1 Domain for the Ganges-Brahmaputra-Meghna River basins and Bangladesh. Upstream basins for 
Ganges (orange line), Brahmaptura (pink line), and Meghna (green line) where rivers flow into Bangladesh. 
Blue lines denote river networks within the Ganges-Brahmaptura-Meghna River basins, while red lines indicate 
the national boundary of Bangladesh. Red markers including circle, triangle, and square are denote gauge 
stations (Hardinge Bridge, Bahadurabad, and Bhairab Bazar) for Ganges River (GR), Brahmaputra River (BR), 
and Meghna River (MR) within Bangladesh.
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the hydrological response to climate impact, assess the ecological status of rivers10, and determine the available 
amount of water. In terms of water resource management, naturalized streamflow can be used in various water 
management scenarios and the impact of these scenarios on the quantity of available water11,12 including supply-
ing water for various economic needs such as industry, agriculture, and electricity. In the perspective of climate 
variability and change, naturalized streamflow usually is used a baseline to calibrate hydrological models due 
to complex to address the issues of climate changes and water-use changes at the same time13,14. Hydrological 
models considered physical process as topographic slope and river network.

Here we aim to reconstruct long-term naturalized streamflow data and generate physically consistent 
long-range hydrologic forecasts for the Ganges-Brahmaputra-Meghna Rivers in Bangladesh to overcome spati-
otemporally limited observational records of daily streamflow. We use the Variable Infiltration Capacity-River 
routing model (VIC-RRM) that is a physical-based macro-scale hydrological model. Most of macro-scale hydro-
logical models explicitly represent natural processes due to the lacking of data on dams, reservoirs, and land 
cover changes15. As a result, they simulate naturalized streamflow, driven by the long-term meteorological forc-
ing data, which is physically consistent with extended records of precipitation16,17. In this study, the VIC-RRM is 
simulated facilitating the high-resolution (<10 kilometers) digital elevation models (DEMs) that reflect natural 
topography. The VIC-RRM generates historical long-term naturalized streamflow data using the ERA5-Land 
reanalysis product18 and the forecasted streamflow data using the European Centre for Medium-Range Weather 
Forecasts (ECMWF) sub-seasonal to seasonal (S2S) forecasts data19 across the Ganges-Brahmaputra-Meghna 
River basins.

Methods
Datasets. Long-term observed daily streamflow data (in cubic meters per second) from 1994 to 2023 was 
collected at the Bahadurabad, Hardinge Bridge, Bhairab Bazar gauge stations on the Brahmaputra River (BR), 
Ganges River (GR), and Meghna River (MR), with support from the BWDB in Bangladesh. In addition, observed 
daily streamflow data before 1994 at the Bahadurabad and Hardinge Bridge stations were obtained from the 
GRDC data download website (https://portal.grdc.bafg.de/applications/public.html?publicuser=PublicUser) by 
the search-related the interested river names (i.e the BM, GM, and MR). The location information and recorded 
time range for three gauge stations are shown in Table 1. These observational datasets were utilized to evaluate the 
performance of the simulated daily streamflow data from the VIC-RRM.

For the simulated streamflow, surface and sub-surface hourly runoff data were derived from the ERA5-Land 
reanalysis product (https://cds.climate.copernicus.eu/datasets/reanalysis-era5-land?tab=download)18, covering 
the period from 1951 to 2023. These hourly runoff datasets were converted to daily datasets to be used as forcing 
data in the VIC-RRM. The ERA5-Land (hereafter, ERA5-L) reanalysis product, consistent with meteorological 
data from ERA5, emphasizes the evolution of land variables over several decades and offers an enhanced resolu-
tion of 9-km, compared to the 25-km resolution of ERA5.

To generate the daily forecast streamflow data, we obtain the ECMWF S2S total and sub-surface daily run-
off forecast data from the 50 ensemble runs with a resolution of 150-km (1.5 degree) during 2016–2023. We 
calculate the surface runoff forecast data as the difference between total runoff and sub-surface runoff fore-
cast datasets because the VIC-RRM requires daily surface and sub-surface runoff data as hydrologic forc-
ing data. The Subseasonal to Seasonal (S2S) Prediction project19 has been established by the World Weather 
Research Programme/World Climate Research Programme to improve and evaluate forecast skill at the sub-
seasonal to seasonal time range. The participant centers provide near-real-time ensemble forecasts up to 60 
days using their fully coupled numerical forecast models. Among 11 national centers involved in the S2S 
project, the ECMWF is is the only center that provides total runoff and sub-surface runoff forecast data with 
50 ensemble members from 2016 to the present. Therefore, we choose the ECMWF S2S forecast data in this 
study. All the S2S data can be accessed by hypertext transport protocol (https://apps.ecmwf.int/datasets/data/
s2s-realtime-instantaneous-accum-ecmf/levtype=sfc/type=pf/). Users can register and visit the data portal to 
browse the contents of the available varaioables, and download the data of interest through the ECMWF web 
API.

Lastly, we obtain the DEM data from the SRTM 90-meter DEM v4 (https://srtm.csi.cgiar.org)20 and linear 
interpolate that to a resolution of 9-km that is consistent with the resolution of the ERA5-Land product.

VIC-River routing model. VIC-RRM is a source-to-sink model based on the linearized Saint-Venant equa-
tions21,22 and uses topography data without consideration of irrigation and reservoir. Simulated streamflow data 
represents natural flow conditions along a river network caused mainly by rainfall and snow-/glacier-melt runoff 
due to high temperature and solar radiation effects. The river network is derived from the altitude of each grid 
within the basin drainage area. Human impacts such as the effect of dam regulation can modulate streamflow 
and available water resources in a natural river23. It have been known that the presence of a dam upstream of a 

Station name River name Latitude Longitude

Time range (YYYY.MM.DD)

GRDC BWDB

Bahadurabad Brahmaputra 25.16 89.70 1985.04.03-1992.03.31 1994.01.01-2023.12.31

Hardinge Bridge Ganges 24.06 89.03 1985.04.03-1992.03.31 1994.01.01-2023.12.31

Bhairab Bazar Meghna 24.05 91.00 — 1994.01.01-2023.12.31

Table 1. Informations for gauge stations in the Ganges-Brahmaputra-Meghna River basins.
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gauge has a greater effect in offsetting natural water flow variability than the presence of a natural lake16,24. Some 
river routing models can assess flood occurrence and impacts at the catchment scale by incorporating water-
shed characteristics and hydrological calculations that take into account the impacts of dams and reservoirs25,26. 
However, at the regional/continental scales, channel models using floodplain inundation dynamics still have 
large uncertainties in river deltas as like Bangladesh27 that originated from lacking of detailed information of 
hydrologic structures and conditions. Furthermore, impact assessment of local human disturbance, particularly 
the dam impact28, remains uncertain, particularly over data sparse regions. In contrast, VIC-RRM is sufficient for 
this study to reconstruct long-term naturalized streamflow data because this model is physically consistent with 
precipitation and snow/glacier melt as a natural hydrological response.

VIC-RRM assumes water can exit a grid cell in one direction through at least one river among the eight 
adjacent grid cells, adding this water to the downstream grid cells in the river network. The model presumes the 
runoff transport process to be linear and time-invariant, with a non-negative impulse response function (IRF). 
Thus, the IRF between any source and sink grid points depends only on the horizontal travel time of water 
within the source grid cell and to the downstream point, including a flow diffusion parameter. The resolution of 
the DEM determines the spatial resolution of streamflow simulated by VIC-RRM used to generate the geograph-
ical information of the watershed in question.

This study used 9-km resolution DEM data over the globe. The first step is that each grid cell’s height, slope, 
stream order, and flow direction are obtained from the DEM, and the topography parameters including each grid 
area, distance to the next grid, and water velocity are objectively calculated. The second step is that the IRFs are 
developed for each grid cell based on the 9-km resolution of DEM. If the horizontal resolution of DEM is higher 
than that of input data (i.e. runoff data), VIC-RRM can initially scale up and consolidate the high-resolution IRF 
grid to match the resolution of input data. The upscaling process uses the first-order conservative remapping 
technique29. The unit response to input data is maintained due to the preservation of the remapping scheme. 
If the resolution of the DEM and the runoff data are the same, the remapping scheme did not work and was 
ignored. In the third step, the routing process is repeated for each specified flow location within the VIC-RRM 
domain using the input runoff data and the IRFs developed for each grid cell. This process integrates the IRFs to 
include all watersheds flowing into a grid cell. After developing the IRFs for the high-resolution river network, 
flow synthesis involves aggregating the flow contributions from all upstream grid cells at each time step, but with 
delays according to the IRFs. This synthesis method of VIC-RRM accounts for the fact that only a portion of 
each grid cell’s flow reaches the downstream point at each time step, and as the process continues, the outflow 
reaching the sea in future time steps is added. Finally, the daily streamflow data calculated by the repeated rout-
ing process are generated as grid data with the same resolution as the DEM.

Workflow. Figure 2 shows the workflow in this study. We reconstructed the long-term naturalized daily 
streamflow data for the drainage areas of Ganges-Brahmaputra-Meghna Rivers and Bangladesh (70–100°E, 
20–35°N) using the VIC-RRM forced by daily surface and sub-surface runoff data from the ERA5-L product18. 
VIC-RRM was simulated at 9-km resolution based on the high-resolution DEMs for the interesting area. The 
forced datasets for VIC-RRM are surface and sub-surface daily runoff (units: mm day−1). We obtained the hourly 
surface and sub-surface runoff data from the ERA5-L product over 1951–2023 and they were calculated the daily 
cumulative surface and sub-surface runoff data. In the last step, the VIC-RRM simulated long-term daily stream-
flow in sixty-five thousand grid cells using input datasets including DEM and ERA5-L daily runoff data. In this 
case, the model was run during the period of ERA5-L (1951–2023).

We compared simulated daily streamflow data against observed daily streamflow records at 3 gauge stations 
(Bahadurabad, Hardinge Bridge, and Bhairab Bazar) in Bangladesh. We assessed the model’s performance using 

Fig. 2 Schematic overview for the reconstructed and forecast daily streamflow in the Ganges-Brahmaputra-
Meghna River basins with the surface and sub-surface runoff data from the reanalysis data (ERA5-L) and 
forecast data (S2S).
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the modified Kling-Gupta Efficiency (mKGE)30,31 and root-mean-square-error (RMSE) for climatological daily 
streamflow. The mKGE is composed temporal errors, bias errors, and variability errors:
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where r is the Pearson correlation coefficient between simulation (s) and observation (o), β is the bias ratio, γ is 
the variability ratio, μ is the mean streamflow, and σ is the standard deviation of streamflow. The interpretation 
of mKGE is easy since the value of mKGE is the lower limit of the three components (r, β, and γ in Eq. 4). The 
model performance is perfect when the value of mKGE is 1. The RMSE, which allows for an intuitive interpreta-
tion of the error magnitude between observed and simulated streamflow, is given below.
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The RMSE value is zero if the model has no error, that is, it is a perfect model.
In addition, the VIC-RRM can be used to produce daily streamflow forecast data for more than 10 days using 

predicted runoff data as input. In this study, the ECMWF S2S (hereafter, S2S) prediction data19 was used to gen-
erate the predicted streamflow data. We used the surface and sub-surface runoff daily forecast data in the S2S 
forecast from 2016 to 2023 at two-week intervals (14 days) as the input data for VIC-RRM to generate stream-
flow forecast data. The performance of this forecasted streamflow data was evaluated by comparing it with the 
reconstructed streamflow data based on the ERA5-L because the generated streamflow datasets from ERA5-L 
and S2S using VIC-RRM are naturalized streamflow.

Data Records
High-resolution (9-km) historical daily naturalized streamflow datasets by the ERA5-L product over 
1951–2023 and forecasted streamflow datasets by the S2S forecast product over 2016–2023 for the 
Ganges-Brahmaputra-Meghna Rivers areas (70–100°E, 20–35°N) are freely available from Harvard Dataverse 
(https://doi.org/10.7910/DVN/V2C6G2)32. The data was recorded spatially, covering the land area of the 
Ganges-Brahmaputra-Meghna River areas including China, India, Nepal, Bhutan, and Bangladesh. Grid stream-
flow datasets were generated daily and saved in netcdf files.

Technical Validation
We evaluated the performance of VIC-RRM for reconstructed streamflow in terms of the 365-day climatology 
for the 3 gauge stations for BR, GR, and MR in Bangladesh (red markers in Fig. 1) during 1994–2023. Figure 3 
shows the 365-day climatological observed and reconstructed streamflow at 3 gauge stations. The reconstructed 
streamflow using the ERA5-L by VIC-RRM is overestimated compared to observations. All three stations show 
strong variability of observed and reconstructed daily streamflow from wet months (May through November), 
rather than dry months (December through April). However, reconstructed data show overestimation of 
variability of daily streamflow from May through November, indicating large uncertainty in wet months of 
Bangladesh. The surface and sub-surface runoff are used as forcing data for the VIC-RRM model simulation 
and are estimated mainly by precipitation. A possible uncertainty source of overestimation in wet months are 
uncertainty of precipitation from the ERA5 reanalysis product, which requires a further validation assessment 
of ERA5 precipitation data, particularly during wet months.

For quantified statistical evaluation, we used the mKGE and RMSE analyses to assess the performance of the 
reconstructed streamflow. The mKGE comprehensively evaluates model performance by assessing the temporal 
accuracy, bias, and variability of model predictions, providing a holistic assessment of model performance across 
various aspects. r, β, and γ components in mKGE (i.e. Equation 4) are related to temporal errors, bias erros, and 
variability errors, respectively. The closer these three components are to 1, the model has good performance. In 
addition, by comparing the three components, we can identify the dominant errors in the model’s performance. 
The value of RMSE denotes the magnitude of errors between two different datasets.

mKGE values for reconstructed streamflow at the Bahadurabad, Hardinge Bridge, and Bhairab Bazar 
gauge stations are 0.75, 0.50, and 0.25. This result shows that VIC-RRM can simulate the streamflow at the 
Bahadurabad station better than at the other stations. In terms of the temporal accuracy (r), three gauge stations 
have 0.99, 0.88, and 0.95. This means that the temporal errors do not differ significantly between three stations. 
Values of β are 1.25, 1.46, and 0.91 at three stations, while that of γ are 1.03, 0.83, and 1.75. According to these 
results, the dominant errors of Bahadurabad and Hardinge Bridge are the bias errors, while that of Bhairab Bazar 
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is the variability error. Values of RMSE at three stations are 7092.92, 8672.75, and 1343.82. It shows the consist-
ent result that the reconstructed streamflow at Bahadurabad and Harding Bridge have larger errors than Bhairab 
Bazar in terms of mean bias. The Student’s t-test showed the p-values are less than 0.05 for the difference between 
observed and reconstructed streamflow data at three stations, indicating a statistically significant difference from 
the observations at a 95% confidence level. The values of mKGE, r, β, γ, and RMSE for the climatological daily 
reconstructed streamflow are summarized in Table 2. It may mean that the model’s performance is not good, 
but it also implies that the observed streamflow is largely affected by human activities such as irrigation and 
reservoir storage. The results imply that the impact of human disturbance might be significant at the local scale, 
which is in line with the findings of a previous study28.

The bias and variability errors can be affected by human activities. Bangladesh is located at the downstream 
of three rivers in terms of topography. Most of gauge stations in Bangladesh do not observe natural streamflow 
due to artificial structures in the upstream areas. As a result, the flow observed at gauge stations in Bangladesh 

Fig. 3 Daily climatological observed (OBS, black line) and reconstructed (ERA5-L, red line) streamflow over 
1994–2023 at Bahadurabad, Hardinge Bridge, and Bhairab Bazar. The correlation coefficient (r) and RMSE 
between climatological observed and reconstructed streamflow are denoted on the top-right corner in each 
panel plot including the P-value for the difference of their means using the Student’s t-test. Shaded areas in gray 
and pink colors indicate the ±1 σ (one standard deviation) range for OBS and ERA5-L.
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cannot be used for water resource management and climate impact studies. Thus, there is bound to be a differ-
ence from the observed streamflow that includes human impacts, and the high bias and variability errors could 
imply that most areas in Bangladesh have their streamflow controlled by human activities. However, VIC-RRM 
can well captures the climatological seasonality of observed streamflow, which is controlled by that of precip-
itation. While human disturbance such as irrigation and reservoir can change the seasonality of streamflow, 
this study focuses on naturalized streamflow to better understand associations of streamflow with climate var-
iability and change. In addition, the bias and variability errors can come from the errors of input data. In the 
Saint-Venant equations used in VIC-RRM, the streamflow depends on the amount of water22. Thus, this model 
can imply that the nonlinear model produces very inaccurate runoff due to an inappropriate amount of precip-
itation. Therefore, problems encountered in land or atmospheric models, such as vegetation parameters, soil 
parameters, and precipitation predictions can generate bias and variability errors between observations and 
simulations21.

To assess the response of streamflow by precipitation in VIC-RRM, we select three major flood events in 
Bangladesh: July 1988, July 2004, and June 2022. Figure 4 shows the accumulated precipitation patterns on 
three, six, and nine days after the beginning date of each flood event (8 July 1998, 10 July 2004, and 12 Jun 2022), 
that is, it presents daily evolutions of the selected flood events at 3-day intervals. A common feature of the three 
flood events is a continuous increase in precipitation in the eastern part of Bhutan and increase in streamflow 
over the northern part of Bangladesh along the Brahmaputra River network. This is due to the geographical 
structure of Bhutan, which is at a higher elevation than Bangladesh. This result is consistent with the findings 
of previous studies that flood events occurred with the rapidly increased precipitation in the north-eastern part 
of Bangladesh33,34,35. Such extreme rainfall events in the upstream areas can cause floods in Bangladesh due to 
topographical effects, which can be examined from the long-term data of reconstructed daily streamflow from 
the VIC-RRM.

Usage Note
For VIC-RMM, river networks of Ganges, Brahmaputra, and Meghna Rivers were constructed using the 9-km 
DEM data to mimic a realistic river network for simulating daily streamflow with grid cells within three river 
basins. VIC-RRM is a simple linear transfer function model that assumes the water transport process is linear 
and time-invariant21,22. It incorporates natural topography derived from DEM data. The spatial resolution of the 
simulated streamflow is determined by the resolution of the DEM, which allows VIC-RRM to be applied to other 
river basins24,36, as high-resolution DEM data is now globally available.

Station name mKGE r β γ RMSE

Bahadurabad 0.75 0.99 1.25 1.03 7092.92

Hardinge Bridge 0.50 0.88 1.46 0.83 8672.75

Bhairab Bazar 0.25 0.95 0.91 1.75 1343.82

Table 2. Values of mKGE, r, β, γ, and RMSE between observed and reconstructed streamflow at three gauge 
stations during 1994–2023.

Fig. 4 Accumulated precipitation and simulated streamflow using VIC-RRM for the 1998, 2004, and 2022 flood 
cases in Bangladesh. (a–d), (i–l), (q–t) Accumulated precipitation (mm) pattern over 3, 6, and 9 days, starting 
from 8th July 1998; 10th July 2004, and 12th Jun 2022. (e–h), (m–p), (u,x) Distribution of simulated streamflow 
(m3s−1) at 3-day intervals from starting dates in 1998, 2004, and 2022 using VIC-RRM forced by runoff datasets 
of ERA5-L. Daily precipitation data obtained from the ERA5-L product.
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The simulated streamflow was evaluated against observed streamflow data at three gauge stations for three 
rivers in Bangladesh. The simulated streamflow by the VIC-RRM exhibits high performance in terms of tem-
poral analysis related to the natural climatological seasonality while having large bias and variability errors at 
three gauge stations. These discrepancies between observed and simulated streamflow data can be attributed to 
the simplified hydrodynamic processes in VIC-RRM, the quality of observed streamflow records, or the impact 
of irrigation and reservoir storage, which need to be further investigated. The impact of local human distur-
bance was embedded in observed daily streamflow records over the Ganges-Brahmaputra-Meghna River basin 
where the streamflow records are available since the late 1990s after the construction of water-engineered facil-
ities. In addition, most errors in simulated streamflow are likely caused by inaccurate runoff and precipitation 
data generated by nonlinear models such as land surface model and climate model21. Thus, bias and variabil-
ity errors may arise from uncertainty in the ERA5-Land runoff data, and our streamflow data can provide an 
opportunity to reduce errors in streamflow through realistic parameterization of land surface models for the 
Ganges-Brahmaputra-Meghna River basin.

Fig. 5 Long-term averaged reconstructed (ERA5-L, red solid line) and forecasted (S2S, blue dashed line) 
streamflow over 2016–2023 at Bahadurabad, Hardinge Bridge, and Bhairab Bazar. The correlation coefficient (r) 
and RMSE between climatological observed and reconstructed streamflow are denoted on the top-right corner 
in each panel plot including the P-value for the difference of their means using the Student’s t-test. Skyblue 
shading denotes the ensemble range for 50 ensemble members in the S2S forecast.
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On the other hand, VIC-RRM used in this study does not take into account the influence of man-made 
structures such as dams and reservoirs, so it has limitations that cannot perfectly match observational data. 
To simulate realistic streamflow while considering human influence, hydrological models using the modules 
related to irrigation37 and reservoir38 can be used. New modules of the VIC model have been developed, which 
can account for water withdrawal and consumption from different sectors, environmental flow requirements for 
water systems, and dam operations39. A recent study proposed the VIC model combined with a deep learning 
model40 to predict reservoir inflow of a reservoir in China. The hybrid model showed significant improvement 
of model performance at six lead months.

Thus, the development of parameter data related to the local human disturbance is required for the anthro-
pogenic streamflow simulation of the Ganges-Brahmaputra-Meghna Rivers, which will provide a unique oppor-
tunity to study the impact of local human disturbance on the regional hydrologic system.

Predicted water resource data helps water managers operate water infrastructure more efficiently and pre-
pare for the impacts of floods and droughts. Using the forecasted runoff data as input for VIC-RRM, streamflow 
forecast data can be obtained. In this study, we used the surface and sub-surface runoff forecast data from the 
S2S forecast product as input from 2016 to 2023 to get the streamflow forecast data. Since the forecast data used 
in this study was generated at two-week intervals, VIC-RRM required the initial conditions of streamflow every 
two weeks. Thus, the regenerated streamflow data using the ERA5-L product was used for the initial state at 
two-week intervals.

Figure 5 shows the long-term averaged daily streamflow using ERA5-L product and S2S forecast product 
by VIC-RRM during 2016–2023 at the Bahadurabad, Hardinge Bridge, and Bhairab Bazar gauge stations. 
Bahadurabad and Hardinge Bridge have fairly similar long-term annual cycles of streamflow between ERA5-L 
and S2S, while the streamflow forecast is underestimated at the Bhairab Bazar gauge station. The performance 
of the forecasted streamflow data using the S2S forecast data was evaluated using the mKGE analysis based on 
the streamflow from ERA5-L. The mKGE values at the Bahadurabad, Hardinge Bridge, and Bhairab Bazar gauge 
stations are 0.97, 1.00, and 0.91. The three components (r, β, and γ) of mKGE are shown in Table 3. In terms of 
the naturalized streamflow, forecasted streamflows at three gauge stations are quite reliable and the ECMWF S2S 
forecast data is valuable for use in generating streamflow forecast data together with VIC-RRM in water resource 
management. In terms of the magnitude of errors, values of RMSE at three gauge stations are 1386.71, 124.62, 

Station name mKGE r β γ RMSE

Bahadurabad 0.97 1.00 0.99 1.03 1386.71

Hardinge Bridge 1.00 1.00 1.00 1.00 124.62

Bhairab Bazar 0.91 0.99 0.91 1.01 428.39

Table 3. Values of mKGE, r, β, γ, and RMSE between reconstructed streamflow and forecasted streamflow at 
three gauge stations during 2016–2023.

Fig. 6 RMSE for long-term averaged runoff between ERA5-L and S2S forecast during 2016–2023. Color lines 
(orange, pink, green, and red) denote the GR, BR, MR basins, and the Bangladesh national boundary.
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428.39. However, Student’s t-test showed that the differences in mean values of simulated streamflow forced by 
the ERA5-L and S2S runoff data at three stations are insignificant with the p-values exceeding 0.05.

The error at Bahadurabad is relatively larger than other stations. It seems to come from the forecasted runoff 
errors of S2S in the BR basin region based on that of ERA5-L. Figure 6 shows the RMSE distribution for the total 
runoff, which is the sum of surface and sub-surface runoff, between ERA5-L and S2S over 2016–2023. Most 
errors are detected within the Brahmaputra basin region. The area averaged RMSE values for the BR, GR, MR 
basins are 3.38, 1.88, 2.75. As with the RMSEs for streamflow at gauge stations, the RMSE value for the basin 
averaged runoff at the Brahmaputra basin region is the largest. These results imply that inaccurate streamflow 
is generated due to the inappropriate prediction of runoff because the streamflow depends on the amount of 
water in VIC-RRM based on the Saint-Venant equations. Thus, the problems occurring in land or atmospheric 
prediction models such as vegetation parameters, soil parameters, and precipitation prediction are important21. 
In addition, in terms of naturalized streamflow, we confirmed that streamflow forecast data can be obtained by 
using reliable forecasted runoff data as input for VIC-RRM. We confirmed that the topographic data (i.e. DEM) 
and forecasted runoff datasets of the numerical forecast model can be used as input data in VIC-RRM to gener-
ate streamflow forecast data.

Code availability
Data processing and plotting were performed using the NCAR Command Language (NCL). VIC-RRM source 
codes used in this study are available from https://doi.org/10.7910/DVN/V2C6G232.
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